您好,欢迎光临!   请登录 免费注册    
  您的位置:电子变压器资讯网 > 资讯中心 >  技术文章 > 正文
高频电源变压器设计原则要求和程序
[发布时间]:2013年1月11日 [来源]:电源网博客 [点击率]:8787
【导读】: 1前言 电源变压器的功能是功率传送、电压变换和绝缘隔离作为一种主要的软磁电磁元件在电源技术中和电力电子技术中得到广泛的应用.根据传送功率的大小电源变压器可以分为几档:10kVA以上为大功率10kV...

4 高频电源变压器的设计程序

高频电源变压器的设计程序,包括磁芯材料,磁芯结构,磁芯参数,线圈参数,组装结构和温升校核等内容.下面分别进行讨论.

4.1 磁芯材料

根据高频电源变压器的设计要求,选择软磁材料本来应当是设计程序的第一项.但是,现在一般都认为高频电源变压器应当选择软磁铁氧体,是自然而然的事情.许多有关高频电源变压器的论文,专著和教材,只针对软磁铁氧体进行讨论,而对其他软磁材料有时说明一下,有时只字不提.而且究竟选择哪一类软磁铁氧体,也不加以说明,好象大家都知道.《电源技术应用》2003年第6期中的两篇文章就是一例.

和任何软磁磁芯材料一样,软磁铁氧体有自己的优缺点.软磁铁氧体的优点是电阻率高、交流涡流损耗小,价格便宜,易加工成各种形状的磁芯.缺点是工作磁通密度低,磁导率不高,磁致伸缩大,对温度变化比较敏感.因此,有些高频电源变压器并不适合选择软磁铁氧体.例如,工作频率比较低(50kHz以下),功率比较大的高频电源变压器,如果选择软磁铁氧体,由于工作磁通密度低,用材料多,磁芯体积大,加工困难,易碎,成品率不高,显不出价格便宜的优势.又例如,工作频率高(500kHz以上),功率比较小的高频电源变压器,磁芯重量和体积本来都小,如果选择软磁铁氧体,必须用PW4、PW5类材料,价格也不便宜,与其他软磁材料相比,磁芯价格基本相当,有时反而由于体积大,而处于不利地位.即使在适合于软磁铁氧体的工作频率范围内,也要对选择哪一类软磁铁氧体更能全面满足高频电源变压器的设计要求,进行认真考虑,才可以使设计出来的高频电源变压器达到比较理想的性能价格比.

4.2 磁芯结构

高频电源变压器设计中选择磁芯结构时考虑的因素有:降低漏磁和漏感,增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配接线方便等.

漏磁和漏感与磁芯结构有直接关系.如果磁芯不需要气隙,则尽可能采用封闭的环形和方框型结构磁芯,特别是工作频率高的电源变压器,因为,有一点漏感,就容易产生比较大的漏阻抗.封闭磁芯的磁通基本上集中在磁芯里面,漏磁小.同时,不论外界干扰磁场从哪个方向侵入,都在磁芯中分为两个方向通过,产生的干扰互相抵消.但是,封闭磁芯绕线困难,且环形磁芯散热要通过线圈,而且内层引出线也要穿过线圈引出,故必须加强绝缘.不封闭磁芯绕线容易,磁芯散热面大,可直接散热,引出线也容易.建议装线圈的磁路部分为圆柱形截面,减少平均匝长,降低损耗.矮胖圆柱形磁芯的漏磁和漏感比瘦高圆柱形磁芯大,一个原因是胖,圆柱形大,漏磁辐射面大;另一个原因是矮,上下两磁轭距离近,容易形成漏磁通的路径.不封闭磁芯中的气隙大小和位置与漏磁和漏感有密切关系.在保证完成功能所需的气隙条件下,尽可能减少气隙尺寸.因为,气隙尺寸增大,不但增加漏磁和漏感,还减少等值磁导率,增加激磁功率,对高频电源变压器工作不利.另外,气隙的位置最好处于线圈的中间部位,可以起到减少气隙漏磁通的作用.

窗口面积的大小与线圈发热损耗和散热面积有关.窗口面积大,绕的电磁线截面大,电阻小,损耗小,发热小.同时,线圈外形尺寸大,散热面积也大.“辨析”一文中提出窗口面积利用问题,不能采取完全肯定和完全否定的态度.一般在留足工艺需要的窗口面积以后,希望尽可能把窗口面积绕满.如果不能充分利用窗口面积,将会造成磁芯尺寸和变压器外形尺寸不必要的增大,有可能要增加材料成本.因此,在高频电源变压器磁芯结构设计中,对窗口面积的大小,要综合考虑各种因素后来决定.“辨析”一文中关于填满磁芯窗口主要是受工频磁性元件设计的影响的理由并不成立.工频变压器的铜损比铁损大,为了增加线圈散热面积,磁芯与线圈之间留有足够的气隙,有时原绕组和副绕组之间也留有气隙.而不是“强调铁芯和绕组的整体性,因而不希望铁芯与绕组中间有气隙”.也不是“设计成绕组填满整个窗口,从而保证其机械稳定性”.线圈和磁芯既然不是一个整体,必须分别用夹件固紧,才能保证各自的机械稳定性.同时,为了保证足够的绝缘距离,线圈两端和绕组之间都必须留有气隙,不可能用绕组填满整个窗口.

为了防止高频电源变压器从里向外和从外向里的电磁干扰,有些磁芯结构在窗口外面有封闭和半封闭的外壳.封闭外壳屏蔽电磁干扰作用好,但散热和接线不方便,必须留有接线孔和出气孔.半封闭外壳,封闭的地方起屏蔽电磁干扰作用,不封闭的地方用于接线和散热.窗口完全开放,接线和散热方便,屏蔽电磁干扰作用差.

4.3 磁芯参数

高频电源变压器磁芯参数设计中,要特别注意工作磁通密度不只是受磁化曲线限制,还要受损耗的限制,同时还与功率传送的工作方式有关. 

对变压器功率传送方式的磁通单方向变化工作模式,ΔB=Bm-Br,既受饱和磁通密度限制,又更主要地是受损耗限制.但是单方向变化的高频电源变压器工作时,沿局部磁滞回线来回变化,磁芯损耗比双方向变化沿大的磁滞回线来回变化小,只有它的30%~40%.而材料测试时是按正弦波双向激磁条件下变化的ΔB为2Bm进行的.因此,Bm可以取材料测试损耗值时,选取的B值高一倍以上.Br受材料磁滞回线上的Br限制,可以用开气隙的办法来降低Br,以增大磁通密度变化值ΔB.虽然开气隙后,激磁电流有所增加,但增大ΔB后可以减少磁芯体积,还是值得的.对变压器功率传送方式磁通双方向变化工作模式,ΔB=2Bm,工作的磁滞回线包围的面积比局部回线大得多,损耗也大得多,Bm主要受损耗限制,在双方向变化工作模式中,还要注意由于各种原因造成激磁的正负变化的伏秒面积不相等,而出现直流偏磁问题.可以在磁芯磁路中加一个小气隙,或者在电路设计时加隔直流电容,或者采用电流型控制来解决. 

对电感器功率传送方式,磁导率是有气隙后的等值磁导率,一般都比磁化曲线测出的磁导率小.可以在确定磁芯结构后,直接测试它.“设计要点”一文中的高频电源变压器采用电感器功率传送方式.不知道为什么不提选用的磁导率,而提BAC或者Bm?也不提BAC或Bm与损耗的关系?

4.4 线圈参数

高频电源变压器设计的线圈参数包括:匝数,导线截面(直径),导线形式,绕组排列和绝缘安排.

原绕组匝数根据外加激磁电压或者原绕组激磁电感(储存能量)来决定,匝数不能过多,也不能过少.如果匝数过多,会增加漏感和绕线工时;如果匝数过少,在外加激磁电压比较高时,有可能使匝间电压降和层间电压降增大,而必须加强绝缘.

副绕组匝数由输出电压决定.高频电源变压器主要用于高频开关电源.开关电源可以对输出电压进行调整,调整上限受允许的开关占空比限制.在从要求的负载电压计算变压器输出电压时,应考虑开关占空比,串联二极管压降和变压器的内阻抗压降.

投稿箱:
   电子变压器、电感器、磁性材料等磁电元件相关的行业、企业新闻稿件需要发表,或进行资讯合作,欢迎联系本网编辑部QQ: , 邮箱:info%ett-cn.com (%替换成@)。
第一时间获取电子变压器行业资讯,请在微信公众账号中搜索“电子变压器资讯”或者“dzbyqzx”,或用手机扫描左方二维码,即可获得电子变压器资讯网每日精华内容推送和最优搜索体验,并参与活动!
温馨提示:回复“1”获取最新资讯。