您好,欢迎光临!   请登录 免费注册    
  您的位置:电子变压器资讯网 > 资讯中心 >  技术文章 > 正文
磁集成技术在倍流同步整流器中的应
[发布时间]:2011年7月4日 [来源]:浙江大学电气工程学院 [点击率]:5554
【导读】: 为了解决传统倍流同步整流变流器的磁性元件和连接端子较多的问题,磁集成(integratedmagnetics)技术已经应用在这种拓扑中。对几种磁集成倍流整流拓扑进行了分析比较。最后给出了1V,20...

      为了解决传统倍流同步整流变流器的磁性元件和连接端子较多的问题,磁集成(integratedmagnetics)技术已经应用在这种拓扑中。对几种磁集成倍流整流拓扑进行了分析比较。最后给出了1V,20W的直流/直流变流器实验模型以及实验波形。

     关键词:倍流整流;磁集成;拓扑

    引言

    在现今的大电流DC/DC变流器中,倍流整流(CDR)拓扑结构由于它本身的特点,已经成为最优的输出整流拓扑选择。与传统的带中间抽头的整流拓扑相比较,其变压器副边只有一组绕组,结构上相对比较简单;同时CDR副边绕组的匝数也较少,在大电流情况下,副边绕组的损耗就会降低;且它的输出有两个滤波电感,流经每个电感上的电流只有负载电流的一半,所以,输出滤波电感上的功率损耗也较小,由于两个滤波电感的存在,变流器的输出电流/电压纹波也相对较小。但它需要3个磁性元件,必然导致体积的增大,从而减小了功率密度;同时具有较多的连接端子,在电流较大时,连接端子上的功率损耗必然相对较大。为了克服以上缺点,磁集成(integrated magnetics)技术早已应用在CDR拓扑当中。所谓磁集成就是将变流器中两个或两个以上的分立磁性元件(变压器,输入/输出滤波电感)都绕制在一副磁芯内,从而达到减小体积,提高功率密度,减少连接端子的目的。

    本文对多种磁集成倍流整流拓扑(IM-CDR)进行了分析和比较,选出了其中较佳的拓扑,并在此IM?CDR拓扑的基础上对一个输出为1V,20W的DC/DC变流器进行了实验,同时给出了实验波形。特别要提出的是,当负载较大时,存储在变压器原边漏感中的能量可用来实现副边同步整流管的自驱动,从而降低了控制电路的复杂程度。

1、 几种磁集成倍流整流拓扑的比较

    图1给出了到目前为止的几种适于低压大电流电压调整模块(VRM)拓扑的IM-CDR拓扑结构。

   (a)分立磁性元件的倍流整流    (b)PengC提出的IM-CDR[1]    (c)ChenWei提出的IM-CDR[2]

(d)(c)中的中间柱气隙可不加    (e)XuPeng提出的IM-CDR[3]    (f)SunJian提出的改进型IM-CDR图1    IM-CDR电路结构

     图1(a)所示的是采用分立元件构成的CDR电路,它一共需要3个分立的磁性元件,分别是输出滤波电感L1和L2,以及变压器。结果导致变流器体积和重量过大。同时,它的大电流连接端子也较多,这必然增加副边的导通损耗。

    为了避免上述这种传统CDR拓扑结构的不足,PengC提出了一种IM-CDR电路拓扑[1],如图1(b)所示。它将以往的CDR整流电路中的3个分立磁性元件(输出滤波电感和变压器)集中绕制在同一副磁芯中,结果大大地减小了变流器的体积和重量,但是,由于它副边仍然有较多的绕组数和连接端子,使得这种CDR拓扑的应用受到了限制。

[上一页] [1] [2] [3] [下一页]

投稿箱:
   电子变压器、电感器、磁性材料等磁电元件相关的行业、企业新闻稿件需要发表,或进行资讯合作,欢迎联系本网编辑部QQ: , 邮箱:info%ett-cn.com (%替换成@)。
第一时间获取电子变压器行业资讯,请在微信公众账号中搜索“电子变压器资讯”或者“dzbyqzx”,或用手机扫描左方二维码,即可获得电子变压器资讯网每日精华内容推送和最优搜索体验,并参与活动!
温馨提示:回复“1”获取最新资讯。