您好,欢迎光临!   请登录 免费注册    
  您的位置:电子变压器资讯网 > 资讯中心 >  技术文章 > 正文
非隔离式开关电源的PCB布局设计
[发布时间]:2014年6月18日 [来源]:21ic.com [点击率]:14929
【导读】: 一个良好的布局设计可优化效率,减缓热应力,并尽量减小走线与元件之间的噪声与作用。这一切都源于设计人员对电源中电流传导路径以及信号流的理解。当一块原型电源板首次加电时,最好的情况是它不仅能工作,而且...

  图3b为降压转换器中的关键脉冲电流回路提供了一个布局例子。为了限制电阻压降和过孔数量,功率元件都布放在电路板的同一面,功率走线也都布在同一层上。当需要将某根电源线走到其它层时,要选择在连续电流路径中的一根走线。当用过孔连接大电流回路中的PCB层时,要使用多个过孔,尽量减小阻抗。

  图4显示的是升压转换器中的连续电流回路与脉冲电流回路。此时,应在靠近MOSFET QB与升压二极管D的输出端放置高频陶瓷电容CHF.

  图5是升压转换器中脉冲电流回路的一个布局例子。此时关键在于尽量减小由开关管QB、整流二极管D和高频输出电容CHF形成的回路。

图5,本图显示的是升压转换器中的热回路与寄生PCB电感(a);为减少热回路面积而建议采用的布局(b)。

 图6和图7(略)提供了一个同步降压电路的例子,它强调了去耦电容的重要性。图6a是一个双相12VIN、2.5VOUT/30A(最大值)的同步降压电源,使用了LTC3729双相单VOUT控制器IC.在无负载时,开关结点SW1和SW2的波形以及输出电感电流都是稳定的(图6b)。但如果负载电流超过13A,SW1结点的波形就开始丢失周期。负载电流更高时,问题会更恶化(图6c)。

  在各个通道的输入端增加两只1μF的高频陶瓷电容,就可以解决这个问题,电容隔离开了每个通道的热回路面积,并使之最小化。即使在高达30A的最大负载电流下,开关波形仍很稳定。

  高DV/DT开关区

  图2和图4中,在VIN(或VOUT)与地之间的SW电压摆幅有高的dv/dt速率。这个结点上有丰富的高频噪声分量,是一个强大的EMI噪声源。为了尽量减小开关结点与其它噪声敏感走线之间的耦合电容,你可能会让SW铜箔面积尽可能小。但是,为了传导大的电感电流,并且为功率MOSFET管提供散热区,SW结点的PCB区域又不能够太小。一般建议在开关结点下布放一个接地铜箔区,提供额外的屏蔽。

  如果设计中没有用于表面安装功率MOSFET与电感的散热器,则铜箔区必须有足够的散热面积。对于直流电压结点(如输入/输出电压与电源地),合理的方法是让铜箔区尽可能大。

  多过孔有助于进一步降低热应力。要确定高dv/dt开关结点的合适铜箔区面积,就要在尽量减小dv/dt相关噪声与提供良好的MOSFET散热能力两者间做一个设计平衡。

功率焊盘形式

  注意功率元件的焊盘形式,如低ESR电容、MOSFET、二极管和电感。图8a(略)和8b(略)分别给出了不合理和合理的功率元件焊盘形式。

  对于去耦电容,正负极过孔应尽量互相靠近,以减少PCB的ESL.这对低ESL电容尤其有效。小容值低ESR的电容通常较贵,不正确的焊盘形式及不良走线都会降低它们的性能,从而增加整体成本。通常情况下,合理的焊盘形式能降低PCB噪声,减小热阻,并最大限度降低走线阻抗以及大电流元件的压降。

  大电流功率元件布局时有一个常见的误区,那就是不正确地采用了热风焊盘(thermal relief),如图8a(略)所示。非必要情况下使用热风焊盘,会增加功率元件之间的互连阻抗,从而造成较大的功率损耗,降低小ESR电容的去耦效果。如果在布局时用过孔来传导大电流,要确保它们有充足的数量,以减少阻抗。此外,不要对这些过孔使用热风焊盘。

  图9(略)是有多个板上电源的应用,这些电源共享相同的输入电压轨。当这些电源互相不同步时,就需要将输入电流走线隔离开来,以避免不同电源之间耦合公共阻抗噪声。每个电源拥有一个本地的输入去耦电容倒是不太关键。

  对于一只PolyPhase单输出转换器,为每个相做一个对称布局有助于热应力的均衡。

  布局设计实例

  图10(略)是一个设计实例,它是一个3.5V~14V,最大输出1.2V/40A的双相同步降压转换器, 使用了LTC3855 PolyPhase电流模式步进降压控制器。在开始PCB布局前,一个好的习惯是在逻辑图上用不同颜色特别标示出大电流走线、高噪声的高dv/dt走线,以及敏感的小信号走线。这种图将有助于PCB设计者区分开各种走线。

  图11(略)是这个1.2V/40A电源的功率元件层上的功率级布局例子。图中,QT是高侧控制MOSFET,QB是低侧同步FET.可选择增加QB的接地面积,以获得更多的输出电流。在功率元件层的下方,放了一个实心的电源地层。

投稿箱:
   电子变压器、电感器、磁性材料等磁电元件相关的行业、企业新闻稿件需要发表,或进行资讯合作,欢迎联系本网编辑部QQ: , 邮箱:info%ett-cn.com (%替换成@)。
第一时间获取电子变压器行业资讯,请在微信公众账号中搜索“电子变压器资讯”或者“dzbyqzx”,或用手机扫描左方二维码,即可获得电子变压器资讯网每日精华内容推送和最优搜索体验,并参与活动!
温馨提示:回复“1”获取最新资讯。